

Fibre-Fast Self Drilling screws were tested for determination of withdrawal properties in accordance with AS 3566.1-2002 (R2015) Self-Drilling Screws for the Building and Construction Industries – Part 1: General Requirements and Mechanical Properties.

Testing

The test procedure included being driven into G450 1.5mm thick steel purlin.

Screw Type: Fibre-Fast Self Drilling (SD) – 14-14 x 65mm long

Screw Designation: ST 6.3 (No. 12/14) **Head Type:** Hexagon Head 5/16

Coating Type: Zinc

Application: For Fibreglass sheeting into metal purlin

Screws were driven into galvanized steel substrate of 1.5mm thickness.

For all testing into steel substrates, several full pitch threads were protruding from the underside of the test plate. Axial withdrawal force was then applied individually to the screw head until the screws achieved the peak tensile force and withdrew from the test plate.

Table 1: Withdrawal Test Data for 14-14 x 65mm Long; 1.5mm Thick Steel (Purlin)

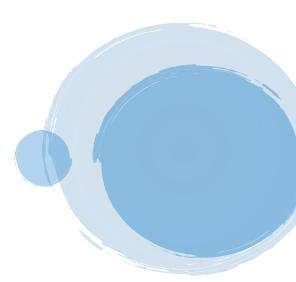

Sample	Test	Peak	Mode of		
ID	Number	Force	Failure		
		(kN)			
14 - 14 x 65 mm	1	4.7	Withdrawal from steel purlin. No damage to threads		
	2	5.1	Withdrawal from steel purlin. No damage to threads		
	3	4.3	Withdrawal from steel purlin. No damage to threads		
	4	4.3	Withdrawal from steel purlin. No damage to threads		
	5	4.9	Withdrawal from steel purlin. No damage to threads		
	6	4.9	Withdrawal from steel purlin. No damage to threads		
	7	4.0	Withdrawal from steel purlin. No damage to threads		
	8	4.3	Withdrawal from steel purlin. No damage to threads		
	9	4.4	Withdrawal from steel purlin. No damage to threads		
	10	4.3	Withdrawal from steel purlin. No damage to threads		
Statistics					
Mean		4.5			
Maximum Value		5.1			
Minimum Value		4.0			
Standard Deviation		0.4			
Coefficient of Variation		0.08			
AS 3566.1-Table 3.3 Withdrawal Strength Requirements					
Screw Designation		14G BSD			
Minimum Permissible Value		3.1			

Table 2: Shear Test Data for 14-14 x 65mm Long; 1.5mm Thick Steel (Purlin)

Sample	Test	Double Plane	Single Plane	Mode of
ID	Number	Shear Force	Shear Force	Failure
		(kN)	(kN)	
14 - 14 x 65 mm	1	26.2	13.1	Double plane shear
	2	28.9	14.4	Double plane shear
	3	29.2	14.6	Double plane shear
	4	28.4	14.2	Double plane shear
	5	26.1	13.1	Double plane shear
	6	30.3	15.1	Double plane shear
	7	25.8	12.9	Double plane shear
	8	25.8	12.9	Double plane shear
	9	23.6	11.8	Double plane shear
	10	27.3	13.6	Double plane shear
Statistics				
Mean		27.2	13.6	
Maximum Value		30.3	15.1	
Minimum Value		23.6	11.8	
Standard Deviation		2.0	1.0	
Coefficient of Variation		0.07	0.07	
AS 3566.1-Shear Strength R				
Minimum Permissible Value	N/A	N/A		
Test Comment	N/A	N/A		

Installation Guide:

- Use drill/driver with clutch at RPM 1,800-2,500.
- Drill at low speed initially to allow wings to cut expansion hole in fibreglass sheeting.
- Drill through metal substrate and slowly drive until seal forms watertight seal over fibreglass.
- Do not over-drill screw to avoid crushing fibreglass sheeting or compressing seal which may cause gaps.

